Recovery guarantees for exemplar-based clustering
نویسندگان
چکیده
For a certain class of distributions, we prove that the linear programming relaxation of kmedoids clustering—a variant of k-means clustering where means are replaced by exemplars from within the dataset—distinguishes points drawn from nonoverlapping balls with high probability once the number of points drawn and the separation distance between any two balls are sufficiently large. Our results hold in the nontrivial regime where the separation distance is small enough that points drawn from different balls may be closer to each other than points drawn from the same ball; in this case, clustering by thresholding pairwise distances between points can fail. We also exhibit numerical evidence of high-probability recovery in a substantially more permissive regime.
منابع مشابه
Clustering to Find Exemplar Terms for Keyphrase Extraction
Keyphrases are widely used as a brief summary of documents. Since manual assignment is time-consuming, various unsupervised ranking methods based on importance scores are proposed for keyphrase extraction. In practice, the keyphrases of a document should not only be statistically important in the document, but also have a good coverage of the document. Based on this observation, we propose an u...
متن کاملLarge-scale Submodular Greedy Exemplar Selection with Structured Similarity Matrices
Exemplar clustering attempts to find a subset of data-points that summarizes the entire data-set in the sense of minimizing the sum of distances from each point to its closest exemplar. It has many important applications in machine learning including document and video summarization, data compression, scalability of kernel methods and Gaussian processes, active learning and feature selection. A...
متن کاملScalable Exemplar Clustering and Facility Location via Augmented Block Coordinate Descent with Column Generation
In recent years exemplar clustering has become a popular tool for applications in document and video summarization, active learning, and clustering with general similarity, where cluster centroids are required to be a subset of the data samples rather than their linear combinations. The problem is also well-known as facility location in the operations research literature. While the problem has ...
متن کاملEffective Image and Video Error Concealment using RST-Invariant Partial Patch Matching Model and Exemplar-based Inpainting
An effective visual error concealment method has been presented by employing a robust rotation, scale, and translation (RST) invariant partial patch matching model (RSTI-PPMM) and exemplar-based inpainting. While the proposed robust and inherently feature-enhanced texture synthesis approach ensures the generation of excellent and perceptually plausible visual error concealment results, the outl...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Comput.
دوره 245 شماره
صفحات -
تاریخ انتشار 2015